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and thereby to the path integral representation of the evolution operator
[FeyHib65, Sch81], since
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which as N — oo yields
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z(t)=z+,2(0)=xg
The converse is also true, namely, if we take equation (3.11) as the definition
of the evolution operator, we may derive the Schrodinger equation. We have
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The Gaussian factor makes sure that only values y ~ x; contribute, so we may
expand everything else in powers of (y — ;) and integrate term by term, whereby
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3.1.1 Wigner functions

So far, we have described states of a quantum system in terms of kets |«a) in
a Hilbert space. Considering the position and momentum states |x) and |p),
we may introduce the wavefunctions in position and momentum representations
Y (z) = (r|a) and ¥ (p) = (p| ), which are related to each other through a
Fourier transform
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v (x)|* and |4 (p)|” represent the probability distribution functions for position
and momentum, respectively. The question arises on whether these distributions
may be obtained as marginal distributions from a joint probability for position
and momentum. The answer is of course not, at least in general, since the exis-
tence of such a joint probability density would be almost conjured as saying that
position and momentum may be simultaneously well defined. Nevertheless, in
1932 Wigner found an object which comes remarkably close [Wig32, HOSW84].
This object is the Wigner function
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Indeed, if we integrate over p we get the probability distribution for x
2
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while integrating over z and switching variables to x 4+ u/2 we get

/ dz 1Y (z,p) = v (p) (3.17)

The reason why f" cannot be directly identified as a probability distribution
function is that f", although real, is not necessarily nonnegative. We shall see
examples below.

The dynamics of the Wigner function is also quite remarkable. If the wave-
function obeys the Schrodinger equation (equation (3.1) in the coordinate rep-

resentation)
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After integration by parts, this term contributes
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The second term is much harder to handle. If the potential is smooth, one can
try a Kramers—Moyal expansion [Kra40, Moy49, Kam8&1]
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Commuting the integral and the sum, we obtain the second term as
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In terms of the classical Hamiltonian H = p?/2m + V, our result reads

w
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where the Poisson bracket {H , fW} was introduced in Chapter 2, equation
(2.48). In other words, the dynamics of the Wigner function follows remark-
ably closely the classical transport equation with external potential V (x). If
V' is harmonic, there are no higher order terms, and the dynamics followed by
the Wigner function is exactly the classical dynamics of a distribution function
[Hab04, CDHR98]. However, as we have already remarked, that does not mean
that f is classical, as it may be negative in some regions of phase space.

It is clear that we may compute the Wigner function f" associated with any
wavefunction ¢, but the converse is not true: it is easy to imagine phase space
functions f" which cannot be obtained as Wigner functions from any . Indeed,
it is enough to imagine a distribution function violating Heisenberg’s uncertainty
principle to exclude such an identification. To the best of our knowledge, there
is no simple sufficient condition to see whether a given f" is a Wigner function,
although there are many necessary conditions (such as positivity of the marginal
distributions).

To summarize, although f" itself cannot be understood as a probability den-
sity, conveniently smeared versions of f" are nonnegative and may be used
to assign probabilities to different events. This restricted interpretation of the
Wigner function will be enough for our requirements below.

Some examples

The simplest possible example of a Wigner function is a momentum state
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Now consider a stationary wave
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representing a coherent superposition of two states of opposite momentum. Then
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We see that f" is not nonnegative. The oscillatory terms are related to the
interference between the two components of the wave packet [PaHaZu93].
As a second example, let us consider a Gaussian wave packet
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In this case f" is positive definite, and the dispersions in = and p are what may
be expected for a minimum uncertainty state.
In particular, suppose our state is the ground state for a harmonic oscillator.

Then o2 = h/2MS), and
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As a final example, let us consider a superposition of two Gaussian wave

packets
Y (z) = m {Ae—(m—a)2/402 + Be—(:v+a)2/4o'2} (3.31)
leading to
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Again, we see nonpositive terms arising from the interference between the dif-
ferent components. If A and B had random phases, f"¥ would be nonnegative.

Wigner functions and probabilities

We know that if the system is in the state v (x), the probability of observing it
in the state ¢ (x) is

2
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If we call f};‘/ and fd‘)’v the corresponding Wigner functions, and call

Q = 2h / dedp £ (z,p) fV (.p) (3.34)
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then P = (). Indeed
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This implies in particular that the inner product (3.34) of two Wigner func-
tions must be positive. Since Gaussian distributions consistent with Heisenberg’s
principle are allowed Wigner functions, this implies that Gaussian smearings of
a Wigner function are positive definite.

3.1.2 Closed time path (CTP) integrals

Recall that states evolve according to equation (3.2). Using the matrix elements
(3.11) for the evolution operator, we obtain

w(x,t):/d:c(()) U(a:,a:(O),t)w(a:(O),O):/(t): D ¢5/a) (z (0 ,0)
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in the coordinate representation, where U (x,z (0),t) = (x| U (¢) |x (0)). By lin-
earity, we infer that the density matrix evolves according to

p(x,z',t) = (x| U (t) pUT (t)|2)
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The possibility of cyclic permutations under a trace shows that Tr p(t) =
Tr p (0) = 1, as it should.

We see that the path integral representation involves two histories, rather
than a single history of the system as in equation (3.11). This observation is
the departure point of the so-called closed time path formalism, which we shall
develop at length in this book, especially in Chapters 5 and 6; for source ref-
erences see [Sch60, Sch61, BakMah63, Kel64, ChoSuHa80, CSHY85, SCYCS8S,
DeW86, Jor86, CalHu87, CalHu88, CalHu89]. To investigate further the meaning
of these two-time-path integrals, let us consider the expression
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The upper limit is free, provided it is the same for both histories. We may describe
this as an integral over single histories defined on a closed time path (CTP). This
time path has a first branch from 0 to ¢, where the history takes the values z (t),



